

Assessing Extreme Weather Risks on New Jersey's Transportation Network

Study 1:

Climate Change
Vulnerability and Risk
Assessment of New
Jersey's Transportation
Infrastructure

Purpose:

- Test FHWA's
 Vulnerability/Risk
 Assessment
 Model.
- Gather information valuable to NJ.

Methodology for Two Study Areas

- Identify key transportation assets.
- Develop future climate/ extreme weather scenarios for 2050 and 2100.
- 3. Overlay to assess potential future impacts.

Results:

Coastal Study Area

Year 2100, Medium Scenario Results

1 Meter Sea Level Rise with Storm Surge

48.5 miles of roadway potentially impacted

2.9 miles of NJ Transit Lines impacted.

31 total rail miles impacted.

Results:

Central Study Area

Year 2100, Medium Scenario

81 miles of roadway potentially impacted

Major Routes Impacted: I-295, I-676 and US 130

138 rail miles, 11.7 miles Amtrak.

Table 27. Adaptation Strategy Matrix (Roadways, Bridge Approaches, and Tunnels)

IMPACT Climate Stress	STRATEGY Planning or: Sea Level Rise	Design	Operations	Frequency/ Severity of Future Incidence
Flooding	Site future infrastructure out of or above estimated flood impact zone Identify or create redundant routes Abandon/ relocate infrastructure (for chronically flooded segments)	Enhance shoreline infrastructure (sea walls and shoreline armoring) Elevate infrastructure Enhance drainage to minimize road closure time and pavement deterioration (pumping infrastructure for tunnels)	Road closures as necessary Traveler notification of flooded roadways and alternative routes/modes (ITS)	0
Erosion	Land use policies discouraging development in at-risk zones	Create/ strengthen seawalls and barriers	More frequent inspections and maintenance Beach nourishment Wetland maintenance	0
Corrosion (from chronic sea water exposure)		Design infrastructure to resist salt water corrosion	More frequent inspections and maintenance	0
Climate Stressor: Storm Surge (Hurricanes and Nor'easters)				
Flooding	Establish and frequently update emergency detours and evacuation routes Site future infrastructure out of or above estimated flood impact zone Abandon/ relocate infrastructure (for chronically flooded	Enhance shoreline infrastructure (sea walls and shoreline armoring) Elevate infrastructure Enhance drainage to minimize road closure time and pavement deterioration (pumping infrastructure for tunnels)	Emergency sandbagging Road closures as necessary Traveler notification of flooded roadways and alternative routes/modes (ITS)	0
Erosion/ washouts	segments) • Land use policies discouraging development in at-risk zones	Create/ strengthen seawalls and barriers Harden/ stabilize slopes	More frequent inspections and maintenance Beach nourishment Wetland maintenance	0

Recommendations

FHWA Model:

- Acceptance/comfort/validity of predictions. What are agencies/public willing to buy in to? Development of public policies that provide political cover for planning/engineering decisions based on accepted risk tolerance.
- Adaptation module could be developed.

New Jersey Specific:

- Data gaps were identified in terms of bridges, culverts, incidents.
- Recommend high level vulnerability assessment for the entire state.

Climate Change Vulnerability and Risk Assessment of New Jersey's Transportation Infrastructure

Medium Sea Level Rise Scenario

Coastal Study Area (Rail)

Year 2100

1 Meter Sea Level Rise with Storm Surge

21 miles of track potentially impacted

Lines Impacted: Atlantic City Line

Climate Change Vulnerability and Risk Assessment of New Jersey's Transportation Infrastructure

Inland Flooding using A1B Emissions Scenario

Central Study Area (Rail)

Year 2100

138.5 miles of track potentially impacted including 26 miles of NJ Transit track and 21 miles of Class 1 freight track.

Purpose:

Examine impacts of Sandy and other recent storms and compare to predictive models.

Develop engineering adaptation assessment process.

Identify up to 10 assets for adaptation assessment.

Engineering-Based Adaptation Assessment Process

Pre-Assessment: Asset Data/ Description

Module 1: Current and Future Climate Stressors

Module 2: Vulnerability Assessment

Module 3: Consequence Analysis

Module 4: Develop and Select Adaptation Strategies

Progress

- Data from actual storms compiled.
- Engineering adaptation process developed.
- •9 of 10 engineering assessments will be completed by the end of August 2015.
- •System-wide vulnerability assessment/analysis is underway.
- Final report expected Spring 2016.